# Traffic Impact Analysis Orchard Hills 

## Twisp, Washington

## Prepared For:

Palm Investments North, LLC

## Prepared By:

SCJ Alliance
8730 Tallon Lane NE, Suite 200
Lacey, WA 98516
360.352.1465

April 2023

# Traffic Impact Analysis 

## Project Information

## Project:

Prepared for:

## Reviewing Agency

Jurisdiction:

## Project Representative

Prepared by:

Contact:

Project Reference:

Orchard Hills

Palm Investments North, LLC

Town of Twisp

SCJ Alliance
8730 Tallon Lane NE, Suite 200
Lacey, WA 98516
360.352.1465
scjalliance.com
Ryan Shea, PTP, Senior Transportation Planner

SCJ \#22-000682
Path: N:\Projects\5926 Palm Investment North LLC\22000682 Palm Investment North LLC - Orchard Hills Housing 004 - Dels $\backslash$ Reports\TIA\Traffic Impact Analysis 2023-0405.docx

## Signature

The technical material and data contained in the Traffic Impact Analysis were prepared under the supervision and direction of the undersigned, whose seal, as a professional engineer licensed to practice as such, is affixed below.


## Table of Contents

1 Introduction ..... 1
1.1 Project Overview ..... 1
1.2 Study Context ..... 1
2 Project Description ..... 2
2.1 Development Proposal ..... 2
3 Existing Conditions ..... 3
3.1 Area Land Uses .....  3
3.2 Roadway Inventory ..... 3
3.3 Traffic Volume Data ..... 4
3.4 Crash History ..... 4
4 Project Traffic Characteristics ..... 5
4.1 Site-Generated Traffic Volumes ..... 5
4.2 Site Traffic Distribution and Assignment. ..... 5
5 Future Traffic Conditions ..... 7
5.1 Roadway Network Improvements ..... 7
5.2 Future Traffic Volumes ..... 7
6 Traffic Operations Analysis ..... 8
6.1 Level of Service ..... 8
6.2 Volume to Capacity Ratio ..... 9
6.3 Intersection Analysis ..... 9
7 Summary and Conclusions ..... 11

## List of Tables

Table 1. ITE Trip Generation Rate - Single-Family Detached Housing (Land Use Code 210) ..... 5
Table 2. Project Trip Generation ..... 5
Table 3. Level of Service Criteria for Intersections ..... 9
Table 4. PM Peak Hour Intersection Operating Conditions ..... 10
List of Figures
Figure 1. Site Vicinity Map ..... 1
Figure 2. Preliminary Site Plan .....  2
Figure 3. Existing Channelization and Intersection Control .....  3
Figure 4. Existing 2023 PM Peak Hour Traffic Volumes ..... 4
Figure 5. Site-Generated PM Peak Hour Volumes ..... 6
Figure 6. Projected 2028 PM Peak Hour Traffic Volumes without Project ..... 7
Figure 7. Projected 2028 PM Peak Hour Traffic Volumes with Project ..... 8
List of Appendices
Appendix A Traffic Scoping Letter
Appendix B Traffic Volume Counts
Appendix C Traffic Volume Calculation Worksheets
Appendix D Capacity Analysis Worksheets

## 1 Introduction

### 1.1 Project Overview

Palm Investments North, LLC is proposing construction of the Orchard Hills project, a single-family residential development near Harrison Avenue and May Street in Twisp, Washington. The proposed project includes 53 single family lots.

Figure 1 illustrates the site vicinity and the transportation network serving the project area.
Figure 1. Site Vicinity Map


### 1.2 Study Context

This report has been prepared to provide the traffic analysis and project information to assist the Town of Twisp in reviewing the development proposal. A Traffic Scoping Letter (included in Appendix A) was prepared and submitted which documented the trip generation, distribution, and assignment of estimated project trips. Based on conversations with City staff the following intersections are included for analysis:

- Methow Valley Highway/Division Street (US 20) at $2^{\text {nd }}$ Avenue
- May Street at $2^{\text {nd }}$ Avenue


## 2 Project Description

### 2.1 Development Proposal

The proposed project would construct 53 single-family residential lots in the Town of Twisp. The project also proposes to dedicate approximately 7.5 acres to the Town of Twisp for a community park or permanent open space. Access to the project is proposed to be from Harrison Avenue. The project is anticipated to be constructed over three phases, with full build out occurring by 2028

The preliminary site plan is provided on Figure 2.
Figure 2. Preliminary Site Plan


## 3 Existing Conditions

### 3.1 Area Land Uses

The proposed project will be located on undeveloped land located near Harrison Avenue and May Street in Twisp, Washington. The adjacent land uses are single family homes and vacant land.

### 3.2 Roadway Inventory

### 3.2.1 May Street

May Street is a north-south local access roadway that provides a single travel lane in each direction. This roadway serves single-family residences and does not currently provide sidewalks or bike lanes.

## $3.2 .22^{\text {nd }}$ Avenue

$2^{\text {nd }}$ Avenue, in the project vicinity, is an east-west major collector. This roadway provides one lane in each direction with a sidewalk along the south side of the road. There are currently no bike lanes provided.

### 3.2.3 Methow Valley Highway/Division Street (US 20)

Methow Valley Highway/Division Street (US 20), within the project vicinity, is a north-south minor arterial with a posted speed limit of 25 mph . This roadway provides a sidewalk along the west side of the road and provides bikes on both sides.

A summary of the existing intersection channelization and control type for each of the study intersections is provided in Figure 3.

Figure 3. Existing Channelization and Intersection Control


### 3.3 Traffic Volume Data

Traffic Count Consultants, TC2, a transportation data collection service, provided evening peak period turning movement counts for the intersections of $2^{\text {nd }}$ Avenue at May Street and $2^{\text {nd }}$ Avenue at Methow Valley Highway/Division Street (US 20).

The intersection of $2^{\text {nd }}$ Avenue at May Street is immediately adjacent to the intersection of Lookout Mountain Road at May Street. As part of the data collection for $2^{\text {nd }}$ Avenue at May Street the traffic volume turning movements to and from Lookout Mountain Road were also collected.

The counts were conducted on March 14, 2023 between 4:00 and 6:00 PM for the PM peak hour. Figure 4 shows the existing, 2023 PM peak hour traffic volumes for the study intersections. The turning movement count diagrams are provided in Appendix B.

Figure 4. Existing 2023 PM Peak Hour Traffic Volumes


### 3.4 Crash History

The Washington Department of Transportation provides crash data for study area roadways. The data was collected over the five-year span between January 1, 2017 and December 31, 2021. There were three crashes reported at the intersection of $2^{\text {nd }}$ Avenue and Methow Valley Highway/Division Street (US 20). Two were identified as property damage only and was reported as injury unknown. There were no reported crashes at the intersection of $2^{\text {nd }}$ Avenue and May Street.

## 4 Project Traffic Characteristics

The project-related characteristics having the most effect on area traffic conditions are peak hour trip generation and the directional distribution of traffic volumes on the surrounding roadway network. The PM peak hour was selected as the traffic analysis period as it represents the highest potential traffic condition on area roadways.

### 4.1 Site-Generated Traffic Volumes

Vehicle trip generation was calculated using the trip generation rates contained in the $11^{\text {th }}$ edition of the Trip Generation Manual by the Institute of Transportation Engineers (ITE). Single-Family Detached Housing (land use code 210) land use category matches the proposed development and has been used to calculate the trip generation. For this analysis, the "fitted-curve" equation was used to estimate trips in preference to using the average trip rate as this approach was recommended by ITE.

Table 1 shows the trip generation characteristics for the land use category Single-Family Attached Housing.

Table 1. ITE Trip Generation Rate - Single-Family Detached Housing (Land Use Code 210)

| Peak Period | Variable | Trip Rate | Enter \% | Exit \% |
| :---: | :---: | :---: | :---: | :---: |
| PM peak hour of Adjacent Street | Dwelling Units | $1.03^{*}$ | $63 \%$ | $37 \%$ |
| *Fitted curve equation rate |  |  |  |  |

The total trip generation expected from this project is calculated by applying the unit measure for the land use category to the trip generation rate. The trip generation for the proposed Orchard Hills project is shown in Table 2. The trip generation calculations, including AM peak hour and daily are provided in Appendix C.

Table 2. Project Trip Generation

| Peak Period | Size | Total Trips | Enter | Exit |
| :--- | :---: | :---: | :---: | :---: |
| PM peak hour of Adjacent Street | 53 | 55 | 35 | 20 |

### 4.2 Site Traffic Distribution and Assignment

For this study, the regional distribution of traffic to and from the proposed project was estimated based on locations and densities of commercial and employment areas. The regional traffic distribution percentages and site traffic assignment for the proposed development for the PM peak hour and daily time periods are shown on Figure 5.

Figure 5. Site-Generated PM Peak Hour Volumes


## 5 Future Traffic Conditions

### 5.1 Roadway Network Improvements

The Twisp six-year Transportation Improvement Program (TIP) 2023 does not include an identified project that could affect the study area. The Town of Twisp Comprehensive Plan, Proposed Motorized Transportation Improvements was reviewed, and the following improvements were identified in the project area:

- Project \#8-Provide second access for the Painter's Addition area.
- Project \#9-Provide improvements (turn lanes and lighting) to the intersection of Second Avenue and SR 20.

Neither of these improvements are expected to be constructed prior to the completion of the proposed Orchard Hills project. As such, they have not been included in the operations analysis described below.

### 5.2 Future Traffic Volumes

Traffic volume forecasts were prepared for PM peak hour conditions for the 2028 horizon year. The future traffic volume forecast includes non-specific background traffic growth and estimated traffic generated by the proposed project.

It is anticipated that background growth will occur within the study area and affect traffic volumes. To calculate a background growth rate historic traffic counts on Methow Valley Highway (US 20) for 2010 and 2018 were identified. An annualized growth rate between the two data points was determined which equates to 2 percent per year.

The projected 2028 traffic volumes without the project are shown on Figure 6. The projected 2028 traffic volumes with project are shown on Figure 7.

The traffic volume calculations for the study intersections are included in Appendix C.
Figure 6. Projected 2028 PM Peak Hour Traffic Volumes without Project


Figure 7. Projected 2028 PM Peak Hour Traffic Volumes with Project


## 6 Traffic Operations Analysis

Traffic analyses were conducted to identify any deficiencies within the study area for the PM peak hour in the 2023 base year and the 2028 horizon year. The PM peak hour was selected as the traffic analysis period as it represents the highest potential traffic condition on area roadways.

### 6.1 Level of Service

The acknowledged source for determining overall capacity for arterial segments and independent intersections is the current edition of the Highway Capacity Manual (HCM). Intersection analysis was performed using the Synchro software package. This software implements the methods of the $6^{\text {th }}$ edition HCM.

Capacity analysis results are described in terms of Level of Service (LOS). LOS is a qualitative term describing operating conditions a driver will experience while traveling on a particular street or highway during a specific time interval. It ranges from A (very little delay) to F (long delays and congestion).

### 6.1.1 Intersection Operations

For signalized intersections, the overall LOS grade represents the weighted average of all movements at the intersection. For intersections under minor street stop-sign control, the LOS of the most difficult movement (typically the minor street left turn) represents the intersection level of service. The LOS/delay criteria for stop sign-controlled intersections are different than for signalized intersections because driver expectation is that a signalized intersection is designed to carry higher traffic volumes and experience greater delay.

Table 3 shows the Level of Service criteria for stop-controlled intersections and signalized intersections.

Table 3. Level of Service Criteria for Intersections

| Level of <br> Service | Signalized/Roundabout Intersection <br> Average Control Delay (seconds/vehicle) | Stop-Controlled Intersection Average <br> Control Delay (seconds/vehicle) |
| :---: | :---: | :---: |
| A | $\leq 10$ | $\leq 10$ |
| B | $>10-20$ | $>10-15$ |
| C | $>20-35$ | $>15-25$ |
| D | $>35-55$ | $>25-35$ |
| E | $>55-80$ | $>35-50$ |
| F | $>80$ | $>50$ |

### 6.2 Volume to Capacity Ratio

Another measure of the performance of an intersection is the "degree of saturation" which is typically presented as the "volume to capacity" ( $\mathrm{v} / \mathrm{c}$ ) ratio. Many factors affect the volume of traffic an intersection can accommodate during a specific time interval. These factors include the number of lanes, lane widths, the type of signal phasing, the number of parking maneuvers on the adjacent street, etc. Based on these factors, the intersection (or individual lane group) is determined to have a total theoretical vehicle carrying capacity " $c$ " for the analysis period. The analysis period volume " $v$ " is compared to the calculated carrying capacity and presented as a ratio. If the $\mathrm{v} / \mathrm{c}$ ratio is below 1.0 , the demand volume is less than the maximum capacity. If the $\mathrm{v} / \mathrm{c}$ ratio is over 1.0 , the demand volume is exceeding the available capacity.

### 6.3 Intersection Analysis

The analysis was conducted for the following scenarios:

- Existing 2023 traffic volumes
- Projected 2028 traffic volumes without the Project
- Projected 2028 traffic volumes with the Project

The intersection control and channelization are documented earlier in this report in Figure 3. The LOS analysis worksheets are included in Appendix D. Following is a description of the Level of Service analysis results for the study intersections with the scenarios listed above.

### 6.3.1 $2^{\text {nd }}$ Avenue at May Street

This is a three-legged intersection under stop-sign control for the northbound approach. In the PM peak hour, the intersection currently operates at a LOS A. In the projected 2028 horizon, this intersection is expected to remain at LOS A with and without project traffic.

Adjacent to this intersection is a second intersection, where Lookout Mountain Road connects to May Street. During the PM peak period (4:00-6:00) there were 13 vehicles observed using this road, with 9 vehicles occurring between 4:00 and 5:00. Given the small volume of traffic using this road there is no operational issue at this intersection. These volumes were included in the analysis of $2^{\text {nd }}$ avenue at May Street.

### 6.3.2 $2^{\text {nd }}$ Avenue at Methow Valley Highway/Division Street (US 20)

This is a four-legged intersection under stop-sign control for the eastbound and westbound approaches. In the PM peak hour, the intersection currently operates at a LOS B. In the projected 2028 horizon, this intersection is expected to remain at LOS B with and without project traffic.

The intersection operational results for the PM peak hour are presented in Table 4.
Table 4. PM Peak Hour Intersection Operating Conditions

| Intersection | Control | Base Year 2023 |  | Projected 2028 Without Project |  | Projected 2028 With Project |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | LOS <br> (Delay) | Worst V/C Ratio | LOS (Delay) | Worst V/C Ratio | LOS <br> (Delay) | Worst V/C Ratio |
| $2{ }^{\text {nd }}$ Avenue/May Street | TWSC² | A (9.0) | 0.01 | A (9.1) | 0.02 | A (8.9) | 0.04 |
| $2^{\text {nd }}$ Avenue/Methow Valley <br> Highway/Division Street (US 20) | TWSC² | A (12.0) | 0.14 | B (12.7) | 0.16 | B (13.4) | 0.21 |

1. Two-Way Stop-Control

Based on the operational analysis results both study intersections are projected to operate with short delays for the minor street movements. This indicates that even during high traffic events, including emergency situations that might funnel additional traffic through the study area, the intersections should operate with an acceptable level of service.

### 6.4 Non-Motorized Facilities

The proposed project will access the town of Twisp via May Street. Currently this road provides two twelve-foot travel lanes and experiences low traffic volumes. After completion of the project the traffic volumes on May Street will increase, but will remain low, with less than 100 total vehicles during the PM peak hour. The existing roadway width and low projected traffic volumes will safely accommodate bicycle and pedestrian traffic.

## 7 Summary and Conclusions

Palm Investments North, LLC is proposing construction of the Orchard Hills project, a single-family residential development near Harrison Avenue and May Street in Twisp, Washington. The proposed project includes 53 single family lots. The project also proposes to dedicate approximately 7.5 acres to the Town of Twisp for a community park or permanent open space. Access to the project is proposed to be from Harrison Avenue. The project is anticipated to be constructed over three phases, with full build out occurring by 2028.

At full occupancy, the project is estimated to generate approximately 55 new-to network trip ends during the PM peak hour. An evaluation of the existing 2023 and projected 2028 horizon year with and without the project traffic was performed. All of the study area intersections are projected to operate at LOS B or better. This indicates that even during high traffic events, including emergency situations that might funnel additional traffic through the study area, the intersections should operate with an acceptable level of service.

Appendix A
Traffic Scoping Letter

## SCJ Alliance

# Technical Memo 

| To | Town of Twisp |
| :--- | :--- |
| From: | Ryan Shea, PTP, Senior Transportation Planner |
| Date: | September 15, 2022 |
| Project: | Orchard Hills |
| Subject: | Traffic Scoping Analysis |

## Introduction:

Palm Investments North, LLC is proposing construction of the Orchard Hills project, a single-family residential development near Harrison Avenue and May Street in Twisp, Washington. The proposed project includes 53 single family lots. This Traffic Scoping Analysis estimates the trip generation, distribution, and assignment for the proposed development. Figure 1 illustrates the site vicinity and the transportation network serving the project area.

Figure 1. Site Vicinity


## SCJ ALLIANCE

CONSULTING SERVICES

## Proposed Development

The proposed project would construct 53 single-family residential lots in the Town of Twisp. The project also proposes to dedicate approximately 7.5 acres to the Town of Twisp for a community park or permanent open space. Access to the project is proposed to be from Harrison Avenue. The project is anticipated to be constructed over three phases, with full build out occurring by 2028.

The preliminary site plan is attached.

## Project Traffic Characteristics

The two project-related characteristics having the most effect on area traffic conditions are peak hour trip generation and the directional distribution of traffic volumes on the surrounding roadway network.

## Site-Generated Traffic Volumes

Vehicle trip generation was calculated using the trip generation rates contained in the $11^{\text {th }}$ edition of the Trip Generation Manual by the Institute of Transportation Engineers (ITE). Single-Family Detached Housing (land use code 210) land use category matches the proposed development and has been used to calculate the trip generation. For this analysis, the "fitted-curve" equation was used to estimate trips in preference to using the average trip rate as this approach was recommended by ITE.

Table 1 shows the trip generation characteristics for the land use category Single-Family Attached Housing.
Table 1. ITE Trip Generation Rate - Single-Family Detached Housing (Land Use Code 210)

| Peak Period | Variable | Trip Rate | Enter \% | Exit \% |
| :--- | :--- | :--- | :--- | :--- |
| AM peak hour of Adjacent Street | Dwelling Units | $0.79^{*}$ | $26 \%$ | $74 \%$ |
| PM peak hour of Adjacent Street | Dwelling Units | $1.03^{*}$ | $63 \%$ | $37 \%$ |
| Daily | Dwelling Units | $10.62^{*}$ | $50 \%$ | $50 \%$ |

*Fitted curve equation rate
The total trip generation expected from this project is calculated by applying the unit measure for each land use category to the appropriate trip generation rate. The trip generation for the proposed Orchard Hills project is shown in Table 2 below.

Table 2. Project Trip Generation

| Peak Period | Size | Total Trips | Enter | Exit |
| :--- | :---: | :---: | :---: | :---: |
| AM peak hour of Adjacent Street | 53 | 42 | 11 | 31 |
| PM peak hour of Adjacent Street | 53 | 55 | 35 | 20 |
| Daily | 53 | 563 | 281 | 282 |

## SCJ ALLIANCE

CONSULTING SERVICES

## Site Traffic Distribution and Assignment

For this study, the regional distribution of traffic to and from the proposed project was estimated based on locations and densities of commercial and employment areas. The regional traffic distribution percentages and site traffic assignment for the proposed development for the PM peak hour and daily time periods are shown on Figure 2.

## Public Comments

It is understood that information about this project has been shared with the public and concerns have been raised. Regarding traffic, the following concerns have been expressed:

- The proposed roadways will be too narrow to accommodate traffic and other travel modes/snow removal/emergency access.
- The existing May Street and Harrison Avenue will not be able to handle the additional traffic generated by the project.
- Project traffic impacts at the intersection of May Street and Second Avenue.

The specific design requirements to ensure accommodations of snow removal and emergency access will be dictated by the Town roadway design standards. The project internal street network has been designed to accommodate future connections to adjacent properties when they develop, which would provide additional vehicle connections. Traffic operational impacts to existing roadways and intersections, including May Street at Second Avenue, and an assessment of pedestrian facilities, can be further addressed if necessary in a traffic impact analysis.

We have presented this information for the Town's use in determining the Scope of Work for a Traffic Impact Analysis. If you have any questions or need additional information, please call me at 360.352.1465.

Respectfully,
SCJ Alliance


Ryan Shea, PTP
Senior Transportation Planner
Enclosures: Preliminary Site Plan
Figure 2

[^0]|  |  |  | dSIMl <br> INOAV 101 ONV OVOY S71IH O४VHכУO <br> INJWdOlヨ＾ヨコ OヨNNV7d W7Vd |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |




## Appendix B <br> Traffic Volume Counts





## Appendix C

Traffic Volume Calculation Worksheets

## Orchard Hills

SCJ ALLIANCE
consulting services

Twisp, WA
Trip Generation

## Project Trip Generation

| PM Peak Hour Trip Generation |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Site Plan Description | LUC | ITE Description | Variable | Value | Trip Rate | Distribution |  | Total Trips |  |  |
|  |  |  |  |  |  | In | Out | In | Out | Total |
| Single Family Homes | 210 | Single-Family Detached Housing | Dwelling Units | 53.0 | 1.03 | 63\% | 37\% | 35 | 20 | 55 |
| Total |  |  |  |  |  |  |  | 35 | 20 | 55 |


| AM Peak Hour Trip Generation |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Site Plan Description | LUC | ITE Description | Variable | Value | Trip Rate | Distribution |  | Total Trips |  |  |
|  |  |  |  |  |  | In | Out | In | Out | Total |
| Single Family Homes | 210 | Single-Family Detached Housing | Dwelling Units | 53.0 | 0.79 | 26\% | 74\% | 11 | 31 | 42 |
| Total |  |  |  |  |  |  |  | 11 | 31 | 42 |




Appendix D
Capacity Analysis Worksheets

| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 1.6 |  |  |  |  |  |
| Movement | EBT | EBR | WBL | WBT | NBL | NBR |
| Lane Configurations | F |  |  | $-\uparrow$ | Mr |  |
| Traffic Vol, veh/h | 35 | 5 | 15 | 65 | 5 | 5 |
| Future Vol, veh/h | 35 | 5 | 15 | 65 | 5 | 5 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | - | - | - | - | 0 | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 81 | 81 | 81 | 81 | 81 | 81 |
| Heavy Vehicles, \% | 3 | 3 | 1 | 1 | 1 | 1 |
| Mvmt Flow | 43 | 6 | 19 | 80 | 6 | 6 |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 3.1 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | * |  |  | * |  |  | \& |  |  | $\uparrow$ |  |
| Traffic Vol, veh/h | 25 | 15 | 35 | 5 | 5 | 10 | 45 | 170 | 10 | 5 | 135 | 25 |
| Future Vol, veh/h | 25 | 15 | 35 | 5 | 5 | 10 | 45 | 170 | 10 | 5 | 135 | 25 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 |
| Heavy Vehicles, \% | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
| Mvmt Flow | 28 | 17 | 39 | 6 | 6 | 11 | 51 | 191 | 11 | 6 | 152 | 28 |



| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 1.6 |  |  |  |  |  |
| Movement | EBT | EBR | WBL | WBT | NBL | NBR |
| Lane Configurations | F |  |  | $-\uparrow$ | Mr |  |
| Traffic Vol, veh/h | 40 | 5 | 20 | 70 | 5 | 5 |
| Future Vol, veh/h | 40 | 5 | 20 | 70 | 5 | 5 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | - | - | - | - | 0 | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 81 | 81 | 81 | 81 | 81 | 81 |
| Heavy Vehicles, \% | 3 | 3 | 1 | 1 | 1 | 1 |
| Mvmt Flow | 49 | 6 | 25 | 86 | 6 | 6 |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 3.2 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | 4 |  |  | \& |  |  | 4 |  |  | \& |  |
| Traffic Vol, veh/h | 25 | 20 | 35 | 5 | 5 | 10 | 50 | 185 | 10 | 5 | 145 | 30 |
| Future Vol, veh/h | 25 | 20 | 35 | 5 | 5 | 10 | 50 | 185 | 10 | 5 | 145 | 30 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 |
| Heavy Vehicles, \% | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
| Mvmt Flow | 28 | 22 | 39 | 6 | 6 | 11 | 56 | 208 | 11 | 6 | 163 | 34 |



| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 3 |  |  |  |  |  |
| Movement | EBT | EBR | WBL | WBT | NBL | NBR |
| Lane Configurations | $\uparrow$ |  |  | $\mathbf{T}$ | MF |  |
| Traffic Vol, veh/h | 40 | 5 | 40 | 70 | 5 | 25 |
| Future Vol, veh/h | 40 | 5 | 40 | 70 | 5 | 25 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | - | - | - | - | 0 | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 81 | 81 | 81 | 81 | 81 | 81 |
| Heavy Vehicles, \% | 3 | 3 | 1 | 1 | 1 | 1 |
| Mvmt Flow | 49 | 6 | 49 | 86 | 6 | 31 |


| Major/Minor | Major1 |  | Major2 |  | Minor1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 0 | 0 | 55 | 0 | 236 | 52 |
| Stage 1 | - | - | - | - | 52 | - |
| Stage 2 | - | - | - | - | 184 | - |
| Critical Hdwy | - | - | 4.11 |  | 6.41 | 6.21 |
| Critical Hdwy Stg 1 | - | - | - | - | 5.41 | - |
| Critical Hdwy Stg 2 | - | - | - | - | 5.41 | - |
| Follow-up Hdwy | - | - | 2.209 | - | 3.509 | 3.309 |
| Pot Cap-1 Maneuver | - | - | 1556 | - | 754 | 1019 |
| Stage 1 | - | - | - | - | 973 | - |
| Stage 2 | - | - | - | - | 850 | - |
| Platoon blocked, \% | - | - |  | - |  |  |
| Mov Cap-1 Maneuver | - | - | 1556 | - | 729 | 1019 |
| Mov Cap-2 Maneuver | - | - | - | - | 729 | - |
| Stage 1 | - | - | - | - | 973 | - |
| Stage 2 | - | - | - | - | 822 | - |
|  |  |  |  |  |  |  |
| Approach | EB |  | WB |  | NB |  |
| HCM Control Delay, s | 0 |  | 2.7 |  | 8.9 |  |
| HCM LOS |  |  |  |  | A |  |
|  |  |  |  |  |  |  |
| Minor Lane/Major Mvmt |  | NBLn1 | EBT | EBR | WBL WBT |  |
| Capacity (veh/h) |  | 956 | - | - | 1556 | W |
| HCM Lane V/C Ratio |  | 0.039 | - |  | 0.032 | - |
| HCM Control Delay (s) |  | 8.9 | - | - | 7.4 | 0 |
| HCM Lane LOS |  | A | - | - | A | A |
| HCM 95th \%tile Q(veh) |  | 0.1 | - | - | 0.1 | - |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 3.9 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations |  | * |  |  | $\uparrow$ |  |  | * |  |  | $\uparrow$ |  |
| Traffic Vol, veh/h | 30 | 20 | 50 | 5 | 10 | 10 | 70 | 185 | 10 | 5 | 145 | 40 |
| Future Vol, veh/h | 30 | 20 | 50 | 5 | 10 | 10 | 70 | 185 | 10 | 5 | 145 | 40 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |
| RT Channelized | - | - | None |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 |
| Heavy Vehicles, \% | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
| Mvmt Flow | 34 | 22 | 56 | 6 | 11 | 11 | 79 | 208 | 11 | 6 | 163 | 45 |




[^0]:    $\mathrm{N}: \backslash$ Projects $\backslash 5926$ Palm Investment North LLC $\backslash 22$-000682 Palm Investment North LLC - Orchard Hills Housing $\backslash 04$ - Dels $\backslash$ Reports $\backslash 2022$-0915 Orchard Hills Traffic Scoping.docx

